The Synthesis of Pillared Vanadium Oxide

Mostafa Khairy, Daniel Tinet, and Henri van Damme*

C. *N. R.S.* - **C.** *R.S. 0. C.I., F-45071 Orleans Cedex 02, France*

A double ion exchange method permits pillaring of the layered vanadium pentoxide xerogel with AI₁₃ oxyhydroxide polymers and a single ion exchange permits pillaring it with Mo₆ and Nb₆ polynuclear cations.

Pillaring is the process which is commonly referred to when a layered solid is permanently expanded by intercalating a strongly bound bulky molecule or ion, in such a way as to yield a material with microporous galleries. Pillaring has been extensively applied to swelling layered silicates (smectite clays), using organic molecules, inorganic polymeric ions, or even oxide colloids. $1-3$ For instance, ion-exchanging the negatively charged montmorillonite host lattice with $\text{Al}_{13}\text{O}_4(\text{OH})_{24}(\text{H}_2\text{O})_{12}^{\text{7+}}$ or $\text{M}_6\text{Cl}_8(\text{OH})_n(\text{H}_2\text{O})_m(^{4-n)+}$ (M = **Mo** or Nb) cations yields gallery heights of the order of 0.9 nm.3

Although smectite clays are a unique family of layered solids with a permanent negative charge, several other layered materials, such as chalcogenides,⁴ perovskite-related oxides,⁵ and phosphates **,6** are potentially capable of being pillared by cation exchange. We report here the first successful pillaring of vanadium pentoxide xerogel, $V_2O_5 \cdot nH_2O$ ($n < 5$), with the same ions as above (referred to as Al_{13} , Mo_{6} , and Nb_{6}).⁷ The layered structure **of** vanadium oxide gel stems from the parallel arrangement of elementary fibres, 2.7 nm wide, into corrugated ribbons.8.9 It can be prepared by pouring molten $V₂O₅$ into cold water or by polycondensation of decavanadic acid, which is itself obtained by passing sodium metavanadate, NaVO₃ (0.3 M) over an acidic resin $(20-50 \text{ mesh})$.¹⁰ Ionization **of** decavanadic acid gives the gel particles a negative charge of the order of 0.2 e-/vanadium, compensated by H_3O^+ ions.^{10,11} In addition to this acidic character, the gel has a weak mixed valence Vv-VIV character.12

As shown by Aldebert *et al.*,¹³ drying the gel at room temperature leads to a composition close to $V_2O_5 \cdot 1.7 H_2O$. The 001 diffraction lines indicate a stacking periodicity, d_{001} ,

of 1.15 nm. At 500 K, the water content drops to 0.1 H₂O per V2O5 unit and *dool* drops to 0.88 nm, which corresponds to a collapsed interlayer space. The difference between the two values **(0.27** nm) corresponds to a monolayer of water molecules. The nitrogen Brunauer-Emmett-Teller (BET) surface area of a dried vanadium pentoxide xerogel powder is low, of the order of $3 \text{ m}^2/\text{g}$, and its micro- or meso-porosity is negligible (this work).

Our first attempts to pillar the gel by direct ion exchange with $Al₁₃$ polymer solutions, classically prepared by slowly adding 0.2 M NaOH to an aluminium nitrate solution $(10^{-2}$ to 10^{-1} M), at 40° C,¹⁴ led to non-reproducible results, which were dependent on the age of the gel. Since the best results were obtained with aged gels, which are likely to undergo hydrolysis due to the action of the interlayer acidity of H_3O^+ , we thought that the presence of vanadyl ions, VO^{2+} , as counterions in the aged gels could have caused the improvement. Indeed, VO^{2+} (aq) exchanged gels are characterized by a larger (\sim 0.54 nm) interlayer spacing than H₃O⁺ gels (\sim 0.27 nm),¹⁵ and this might have facilitated the interlayer diffusion of the large and highly charged $Al₁₃$ ions.

In order to check and to control the process, several batches of fresh H_3O^+ gel (0.5% dry matter) were first cationexchanged with a number of inorganic ions, including VO^{2+} , Li+, Na+, **IS+,** Ag+, Cs+, Rb+, NH4+, Ba2+, Sr2+, Ca2+, $Co²⁺, Mn²⁺, Ni²⁺, Mg²⁺, Cu²⁺, Fe²⁺, La³⁺, Al³⁺, and Fe³⁺,$ by mixing the gel with solutions of the appropriate salt $(10^{-2}$ M salt/g V_2O_5). After washing and air-drying, these preexchanged precipitates were redispersed in water and mixed with the hydrolysed Al solution (OH/Al = 2; 17 mm Al/g V_2O_5) in order to perform, if possible, a second cation

Figure 1. (A) d_{001} distance (room temperature; air-dried) of V_2O_5 gels exchanged with a number of cations, as a function of the polarizing power (charge/radius, e^{-}/nm) of the cations. (B) Nitrogen BET surface area of some of the foregoing, after pillaring with aluminium hydroxide solution.

exchange with the Al_{13} polymer. After a contact time of a few hours, the solids were washed, dialysed, and freeze-dried.

Remarkably, the pre-exchanged gels as well as the final materials can be classified into two classes [Figure l(a) and (b)]. The first class includes the gels pre-exchanged with cations having a charge/radius ratio, *Z/r*, smaller than 16.7 e-/nm. In the pre-exchanged state, these gels are characterized by a d_{001} distance close to 1.15 nm under air-dried conditions (room temperature and a relative water vapour pressure in the ambient atmosphere of *ca.* 0.75). This corresponds to a monolayer of water between the V_2O_5 ribbons. After the second ion exchange with the aluminium solution, their d_{001} distance increases to \sim 1.5 nm and their nitrogen BET surface area, S_0 , is between 10 and 30 m²/g. Although this is a significant improvement with respect to the original gel, it does not correspond to what one expects for layers propped apart with the $Al₁₃$ ion.

On the other hand, the second class includes the gels pre-exchanged with $\overline{VO^{2+}}$ (aq) or with cations having a Z/r ratio larger than $16.7 e^{-}/nm$. In the pre-exchanged state they have a d_{001} distance close to 1.36 nm, which corresponds to a bilayer of water molecules. **In** the final Al-exchanged state, they have a d_{001} distance of the order of 1.8 nm and a nitrogen BET surface area, S_0 , larger than 80 m²/g. Interestingly, the largest d_{001} and S_0 values were always obtained with the VO²⁺ pre-exchanged gels.

The second class can be considered as $Al₁₃$ -pillared $V₂O₅$ xerogels. Their microporous void volume **is** of the order of 0.3 ml/g. Their interlayer distance at room temperature (0.94 nm) is close to that of $Al₁₃$ -pillared smectite clays and corresponds to the diameter of the $Al₁₃$ cation. ²⁷Al NMR spectra of the supernatant solutions showed that the $Al₁₃$ polymer was indeed preferentially adsorbed (the polymer is easily identified by its central tetraco-ordinated Al). However, the thermal stability of Al_{13} -pillared V_2O_5 seems to be lower than that of Al₁₃-pillared smectite clays. Indeed, at 530 K, the d_{001} distance drops to 1.46 nm but this modifies neither the pore volume nor the surface area (which suggests that the gallery height **is** never large enough to allow for a bilayer of nitrogen molecules).

 V_2O_5 xerogel can also be pillared by simple ion exchange with the $Mo₆$ and $Nb₆$ chloride clusters, by mixing an aqueous gel of vanadium oxide, containing 1% of dry matter, with 200 ml of a 1.6 M ethanolic solution of the cluster ions. The mixture is vigorously shaken for 15 min, slowly evaporated at 55 "C for 24 h and washed by dialysis for 48 h. The d_{001} distance of the pillared gels dried at room temperature is close to 1.43 nm and their nitrogen surface area is of the order of $15 \text{ m}^2/\text{g}$.

Although these features are less interesting than with the Al_{13} gels, the stacking order of the Mo_{6} and Nb_{6} gels is better than that of the Al₁₃ gels. Six 00l diffraction orders could be observed in the former case, whereas only two could be observed in the latter case. This, as well as the lower surface area and microporosity of the $Mo₆$ and $Nb₆$ gels with respect to the $Al₁₃$ gel, can be assigned to the much lower cationic charge **of** the M6 hydroxyhalide clusters and, concomitantly, to the larger number of M_6 polycations necessary to saturate the negative charge of the V_2O_5 layers. Thus, Mo_6 - and Nb_6 - V_2O_5 have to be considered as well ordered but encumbered layered structures, whereas Al_{13} -V₂O₅ is a less well ordered but much more open pillared structure.

M. K. is grateful to the Conseil Régional de la Région Centre for a scholarship. This work was supported by Rhône Poulenc Recherches.

Received, 2lst February 1990; Corn. OlOO801 J

References

- 1 R. M. Barrer, J. *Incl. Phenom.,* 1986,4, 109.
- 2 *Catalysis Today,* 1988, special issue, vol. 2.
- 3 T. J. Pinnavaia, in 'Chemical Reactions in Inorganic and Organic Constrained Media,' ed. R. Setton, NATO AS1 Series, 1986, C165, pp. 151-164.
- 4 B. E. Aufdembrink and M. E. Landis, PCT Int. Appl. WO 8800,092 (1988).
- 5 P. Chu, M. E. Landis, and G. W. Kirker, Can. CA 1,251,432 (1989); *Chem Abstr.,* 1989,111, 2905a.
- 6 P. Olivera-Pastor, A. Jimenez-Lopez, P. Maireles-Torres, E. Rodriguez-Castellon, A. A. G. Tomlinson, and L. Alagna, J. *Chem.* **SOC.,** *Chem. Commun.,* 1989,751.
- 7 M. Khairy, D. Tinet, and H. van Damme, Fr. Pat. 88-07748 assigned to Rhône Poulenc.
- 8 J. J. Legendre and **J.** Livage, J. *Colloid Interface Sci.,* 1983,94,75.
- 9 J. J. Legendre, P. Aldebert, N. Baffier, and J. Livage, J. *Colloid Interface Sci.,* 1983, 94, 84.
- 10 J. Lemerle, L. Ndjem, and **J.** Lefebvre, J. *Chem. Res.,* 1978, *(S)* 444; (M) 5301.
- 11 W. A. England, M. G. Cross, **A.** Hamnet, P. J. Wiseman, and J. B. Goodenough, *Solid State Zonics,* 1980, 1, 231.
- 12 B. Araki, J. P. Audieres, M. Michaud, and J. Livage, *Bull. SOC. Chim. Fr.,* 1981, 9-10, 366.
- 13 P. Aldebert, M. W. Haesslin, N. Baffier, and **J.** Livage, J. *Colloid Interface Sci.,* 1984, 98, 478.
- *14* J. **Y.** Bottero, **J.** M. Cases, F. Fiessinger, and J. E. Poirier, J. *Phys. Chem.,* 1980, *84,* 2933.
- 15 F. Babonneau, P. Barboux, F. A. Josien, and J. Livage, *J. Chim. Phys. (Paris),* 1985, *82,* 48.